
Persistence Schemes

Chakchai So-In

Department of Computer science

Washington University

4/5/2007 Washington University 2

Outline

� Problems

� Goals

� General Ideas

� Transport persistence

� Future schemes/ Related Work

� Conclusions

4/5/2007 Washington University 3

Problems

� Connection lost especially for TCP

� IP address is changed.

� Client moves/ Better signal (wireless connection)

� Handoff issue (L2&L3 handoff)

� Link is broken: Network down

� Other issues

� Network move: Mobile Router

� Client down/ Server down (TCP fault tolerant)

� Client transport (move session across media/

adhoc network)

4/5/2007 Washington University 4

Problems (cont.)

� Move Detection (ICMP/ MobileIP message)

� We know when the connection will be

disconnected.

� We don’t know in advance.

HA
VPN
GW

Mobile VPN

Persistent Module

Mobility Client

APP APP APP

Persistent
Engine/HA Module

APP Server

TCP connectionTCP connection

4/5/2007 Washington University 5

Goals

� To preserve the connection to be alive.

(Given, Client down/ Network down/ Server

down, Client move, Server move, the

connection is still preserved (designing the

framework for this)

� TCP/ UDP

� Other protocols such as RTP

� Avoid modifying TCP stack or Proxy issue

� Simplified the idea and easy to code

4/5/2007 Washington University 6

General Ideas

� Layer Persistence

� L1 issue: Low power RF and DSP

� L2 issue: FEC/ARQ

� VPN issue:

� IKE/IPsec Re-Keying

� Allow for Dead-Spot time

� IKE Keep-alive: Spoof Keep Alive (need to check)

� Set keep-alive to 0 and account for DPD

� L3 issue: Mobile IP

� L4 issue: Maintain transport state

� L7 issue: freeze application timer issue/ buffering

4/5/2007 Washington University 7

Transport persistence

� UDP Persistence (UDP -> Connectionless)

� Resent previous UDP packet (like UDP
keepalive)

� MMS and Share Drive

� Should be ok if control message is alive

� TCP Persistence

� Retransmission Timeout, Keepalive
Connection Timeout, Connection Timeout

� Hardcode all those parameters

� Other mechanisms such as TCP freeze

4/5/2007 Washington University 8

TCP freeze overview

� To freeze all TCP timers so we can keep TCP

connection alive. (Build in TCP stack when the buffer

is full)

� Once link is disconnected, a receiver sends Zero

Window Option to freeze TCP timeout parameters as

a result APP stops transferring data: ZWA

� When APP receives ZWA, it will generate TCP Probe

back to check if it can continue sending data : ZWP

� As received TCP Probe, the receiver sends Probe

Ack back if it still wants to freeze transmission but

sends Window update packets to return to normal

state.

4/5/2007 Washington University 9

TCP freeze overview (cont.)

Ack6 win0

6 7 8 9

DATA6 ~9 win4

ZWP

Win Update

Original Ack

100 Ack6 win0 len0

6 Ack101 len1

100 Ack6 win0 len0

Probe Ack

100 Ack6 win4 len0

4/5/2007 Washington University 10

TCP freeze overview (cont.)

Ack2 win4

1

100 Ack2 win4 len0

2 3 4 5 DATA2 ~ 5 win4

Data1 win4

Ack6 win0

Ack6 win4

6 7 8 9
DATA6 ~9 win4

ZWA

ZWP

ZWP: Zero Window Probe (len=1)

Zero Window Probe Ack (w=0)

Window Update Packet (w=update value)

ZWA: Zero Window Packet (w=0)

Probe

Ack

Win

Update

100 Ack6 win0 len0

100 Ack6 win4 len0

4/5/2007 Washington University 11

TCP freeze overview (cont.)

� System Testing

� Telnet: OK with probe ack

� FTP: Mostly OK

� Constrain: TCP timeout depends to TCP

application; Window FTP client (Set an option,

“how long the client will disconnect regarding

the received ZeroW packet”)

4/5/2007 Washington University 12

Idea Implementation

� Stateful approach

� We keep updating both sequence and

acknowledgement number for each flow. Once

the link is disconnected, we can send the zero

window packet based on the last ack.

� Pros: correct information (real ack)

� Cons: too many states and we have to keep

the states although we are in normal

operation: slow (the link is connected)

4/5/2007 Washington University 13

Idea Implementation (cont.)

� Iteration technique (based on δ)
� Once the link is disconnected, we keep
sending 3 duplication acknowledgement
packets back (ACK = current ack – δ) which δ
is usually a maximum window size number.
We can estimate δ from max(recvW, sendW)
when first the connection is established.

� Pros: correct information (real ack)

� Cons: if δ is very big, we have spend too
much time to keep sending ACK—till we get
the last real ack. It might cause the
application timeout be expired.

4/5/2007 Washington University 14

Idea Implementation (cont.)

� Best guess based on traffic and
retransmission packets

� We keep tracking of the retransmission
packets. Once we receive a second
retransmission packet, we send the zero
window packet back based on the least
sequence.

� Once the link is disconnected and the
application retransmits the packet (RTO is
expired), CWND is set to 1 (It means the
application can send at most only one packet).
So they can retransmit only the first real ack.

4/5/2007 Washington University 15

Idea Implementation (cont.)

� Pros: lesser states; we don’t need to keep the

state information during the normal operation.

� Cons: there is an error with this algorithm but

the probability is too low. For example, if the

application sends duplicated packets (Digital

fountain technique), we would think it’s the

retransmission packet.

4/5/2007 Washington University 16

Disconnect

Foreach <sec> Check if there is DATA (TCP) (received packet from L2/L3)

{ For each <additional received packet from TCP layer> }

Keepalive Timeout

Keep alive
ICMP <#number, time (RTT)>

Keepalive OK

No Data
Yes Data

Resume
While <exist in hash>

Clear Hash

Hash Store

No

<SIP, DIP, Sport, Dport>

Yes

IgnoreUpdate Seq

old<newold>newold==new

Send ZeroW

Set (Wf=0)

Set (Wf=1)

Wf = 0: Connect

Wf = 1: Disconnect

(Initial Wf = 0)

Clear (Timeout’)

Check Keep alive

Hash

Timeout’
Yes

No

Link Detection

Seq Compare

Normal

Check Wf

Send Packet Out

Wf==1

Wf==0

Send Win Update

Start Timeout’

Persistence (Zero Window)

Link Detection

4/5/2007 Washington University 17

Future schemes/ Related work

� Maintaining TCP connection due to the

disconnectivity (connection ID)

� Migratory TCP (M-TCP): Changing client IP

[1]

� Robust TCP Connection [2]

� TCP-R (TCP Redirection) [3]

� A Mobile Socket [4]

� Checkpoint/ Process state backup

� Persistent connection [5]

4/5/2007 Washington University 18

Future schemes/ Related work

� Making Server Fault Tolerant

� TCP Connection Migration : Changing Server

[6]

� Fault tolerant TCP (FT-TCP) [7]

� Proxy-assisted

� MSOCK [8]

� Context Migration

� Mobile Service: Context-Aware Service

Migration in Ad Hoc Networks [9]

4/5/2007 Washington University 19

Future schemes/ Relate work

� Application Mobility

� Application-layer Mobility support for

Streaming Real-time Media [10]

� Application-Layer Mobility Using SIP [11]

� Session Mobility

� SLM, A Framework for Session Layer Mobility

Management [12]

� TESLA: A Transparent, Extensible Session-

Layer Architecture [13]

4/5/2007 Washington University 20

Common Ideas

� Hide information from an application layer

� Virtual Port and Virtual connection ID

� Present a unique connection ID securely

mapping to previous connection (synchronize

seq and bytes)

� Buffering/ a mechanism to block non-blocking

write

� Find a way to freeze all timers (L4 to L7)

1(left), 2(right)

3(left), 4(right)

5(left), 6(right)

7(left), 8(right)

9 (top)

10 (bottom)

4/5/2007 Washington University 24

Conclusions

� Persistence Schemes

� Always-on connection (Client down/ Network

down/ Server down, Client move/Server move,

Network move, and Client transport)

� Designing a framework for application-

persistent mobility (if possible)

